
Supplementary Data for “Hybrid error correction and de 
novo assembly of single-molecule sequencing reads” 
 

Online Resources 
Pre-‐compiled	  source	  code	  and	  datasets	  used	  for	  this	  publication:	  
http://www.cbcb.umd.edu/software/PBcR	  
Celera	  Assembler	  source	  code	  and	  documentation	  (including	  PBcR	  correction	  pipeline):	  
http://wgs-‐assembler.sourceforge.net	  

PBcR	  correction	  pipeline	  documentation:	  
http://sourceforge.net/apps/mediawiki/wgs-‐assembler/index.php?title=PacBioToCA	  
 

Implementation Details 
Implementation. The correction algorithm implementation is designed to be easily 
parallelizable, both using shared memory (via POSIX threads) and distributed architectures 
(using SGE). There are two important parameters to specify: 1) the number of parallel consensus 
jobs N. 2) the number of threads t to use for correction. A set of recommended parameters for 
SGE and shared-memory systems is provided in the code distribution. 
The correction step splits the long-read sequences into the user specified number of partitions N. 
The correction is parallelized in two blocks. The first streams through the overlaps computed for 
each long-read sequence and generates N intermediate files specifying the layout of the short-
read sequences. The repeat threshold C is then computed as in Methods. The overlaps are 
examined again (this time serially) for each short-read sequence at most C best hits are stored for 
each. The best hits are recorded into N files, sorted by long-read sequence. Thus, the final 
parallel block uses a pool of t worker threads to operate on N partitions, selecting the next 
partition, 1 ≤ n ≤ N from a queue. As the intermediate results have already been sorted by long-
read sequence and only matching high-identity short-read sequences remain, each thread can 
generate the output for a partition independently of the other threads. Finally, the consensus is 
computed in parallel on each of the N partitions. 
	  

Assembly Introduction 
The assembly problem is frequently formulated as the problem of finding a traversal of an 
appropriately defined graph derived from the sequencing reads. Two commonly used 
formulations are: the Overlap-Layout-Consensus (OLC or string graph) paradigm (Myers, E. 
1995, Kececioglu, J. et. al. 1995, Myers, E. 2005, Miller, J. R. et. al. 2010) where the graph is 
constructed from overlapping shared sequences (edges) between sequence reads (nodes), and the 
Eulerian/de Bruijn graph formulation (Idury, R. et. al. 1995, Pevzner, P. A. et. al. 2001, Butler, J. et al. 
2008, Zerbino, D. R. et. al. 2008) where the graph is constructed from substrings of a given length k, 
called k-mers, derived from the set of reads. The majority of assemblers developed for second-
generation sequencing rely on the de Bruijn graph formulation because it is computationally 



simpler to identify length-k exact matches between reads, making it better suited for high-
coverage, short-read sequencing.  
 
The optimal value of k for a de Bruijn assembler is dependent on the length of the read, the 
genome coverage, and the error rate. In particular, the value k must be small enough so that reads 
with a true overlap share many error-free matching sequences of at least k bases. Under a de 
Bruijn graph formulation, repeats longer than k form branching nodes that must be resolved by 
“threading” reads through the graph or by applying other constraints, such as mate-pair 
relationships (Medvedev P. et. al. 2007). In contrast, within OLC assemblers, only repeats longer 
than l = r − 2*o  cause unresolved branches in the graph, where r is the read length and o is the 
minimum acceptable overlap length. A string-graph formulation can be used to simplify the 
graph by removing all transitive edges. After transitive reduction, the remaining branching nodes 
indicate read disagreement, where a sequence a overlaps both sequences b and c, but b and c do 
not overlap each other. For short-read sequences, k and l are very similar, so the corresponding 
graphs are nearly equivalent. However, for long reads, l may be substantially longer than feasible 
values of k due to the limiting factors of sequencing error. For these reasons, OLC would seem to 
be superior for assembling long reads.  



Supplementary Analysis 
Analysis of PacBio sequences. The error distribution of PacBio RS sequences was evaluated 
using the S. cerevisiae S228c genome (Table S2 for data details). Sequences were aligned to the 
reference using BLASR (http://www.pacificbiosciences.com) with default parameters. The error 
at each base position was tabulated for all sequences. Figure S1a shows the resulting distribution. 
Unlike all other sequencing technologies currently available, the PacBio RS show a normal error 
distribution with no positional bias. The only deviation from the expected 16% error rate is 
visible after 2.5 Kbp when a low sample size (due to the exponential read length distribution) 
causes the per-base positional accuracy to diverge from the mean. Note that this divergence does 
not show decreasing accuracy but is instead equally distributed both above and below the mean 
as would be expected with a sampling artifact. 

Figure S1a. Positional error profile in S. cerevsiae PacBio RS sequences.  The read error rate is tightly distributed around 
16% (as expected) with very little deviation until 2.5 Kbp. This pre-release sequencing data does not have many sequences 
over 2.5Kbp in length, limiting the sample size for the error rate calculation. However, the divergence does not show a drop in 
accuracy, instead there is an equally likely probability of higher or lower accuracy, reflecting the sampling effect. 
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We examined the induced coverage along the reference yeast genome considering the top 10 best 
alignments for each read and only considering alignments >= 1000 bp. Figure S1b shows the 
average coverage of 1000 bp bins along the genome, with gold vertical lines separating the each 
chromosome (chrI-chrXVI, followed by the mitochondrion genome at the right end of the 
figure). The even coverage is consistent with Pacific Biosciences’ claim that their technology 
removes amplification bias and greatly reduces GC bias, leading to more uniform coverage of 
the genome than other technologies (Chin et al 2011). 
 

 
 

Figure S1b. Sequencing depth by genome position. The gold vertical lines separate the chromosome (chrI-chrXVI, then the 
mitochondrion genome). The plot shows that most of the genome is evenly covered with minimal bias. The mitochondrial genome 
shows higher depth because it is present in the cell at a greater copy number than the chromosomes. Coverage spikes in the 
chromosomes are mapping artifacts caused by repeats, because BLASR reports the 10 best hits for each read. 
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The coverage distribution is also displayed in Figure S1c, which shows the number of bases of 
the genome at each coverage level. The distribution closely matches the expected Poisson 
distribution with lamba of ~12.5 (shown in red), although the variance is slightly higher than 
predicted by a Poisson process. In particular, from the Poisson distribution 1.48% of the genome 
is expected to be at 5-fold or lower coverage, but instead 2.97% has 5-fold or lower coverage. 
Furthermore, only .0000187% of the genome is expected to have 30 fold or greater coverage, but 
instead 5.97% has high coverage with a max coverage of 2,024. 

We examined the regions with zero coverage and found they fell into 6 contiguous segments, 
although 3 were 13 bp or less, concordant with the Poisson expectation.  The remaining 3 consist 
of a 2,861 bp region of chr III (148,616-151,476), 326 bp of chr IX (119,987-120,312), and the 
last 158 bp of chrVI (270,002–270,160). The longest region contains a cluster of 3 LTRs and 
several tRNAs.  The next largest segment consists of an exon of the STH1 gene, and the last 
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Figure S1c. Sequencing depth histogram. The distribution closely matches the expected Poisson distribution with lamba of 
~12.5 (shown in red) although the variance is slightly higher than predicted by a Poisson process. 

	  



segment contains part of the telomeric arm of the chromosome. These results suggest the 
sequencing process may have small biases against certain repetitive sequences, although given 
the very small numbers of events and non-zero coverage across the other >100 annotated 
teleomeric repeats, any biases must have marginal effects. 
 
The highest coverage regions (≥ 1,000 fold) consisted of a single 16,895 bp segment (451,625-
468,519) on chr XII, which contains many genes from the 35S and 18S ribosomal RNA 
transcripts. The coverage spikes are likely a mapping artifact caused by reporting the top ten 
matches for each sequence.  
 



Assembly of Uncorrected PacBio Data 
Three commonly available OLC and de Bruijn assemblers were used to assemble the uncorrected 
PacBio sequences for the Lambda phage (Table S2 for data details). The results are in Table S1 
below. We ran SOAPdenovo v1.05, Velvet v1.1.06 and Celera Assembler with the BOGART 
unitigger. For SOAPdenovo, the k-mer size was varied from 3 to 127 mer and the assembly that 
covered the largest percentage of the reference was picked. For Velvet, VelvetOptimizer v2.2.0 
was used to vary the k-mer size from 5 to 63 and the assembly covering the largest percentage of 
the reference was picked. For CA, merSizes from 10 (which produced no assembly) to 22 (the 
default) were used. The CA unitig, overlap, consensus, and cgw error rates were all set to 25%. 
As expected, the assemblers are unable to deal with high-error present in the (uncorrected) 
PacBio RS data, producing “shattered” assemblies. Further analysis confirmed the difficulty of 
finding both matching k-mers and overlaps at high error-rates (Fig S2, S3a).  
 
The PacBio sequences were also corrected using our algorithm via 50X of Illumina data and 
assembled by SOAPdenovo, Velvet, and CA (Table S1). The Celera Assembler assembly used 
the parameters (overlapper=ovl merSize=14 unitigger=bogart). As the 
SOAPdenovo assembly was representative of de Bruijn assemblers, we used it for subsequent 
experiments in the paper. 
 
 

Assembler k-mer N50 Max Corrected N50 Total BP % Reference 
Covered 

% Identity to 
reference 

CA 14  0 1,095 0 4,734 6.33% 98.92% 
SOAPdenovo  39 2,239 2,682 133 4,526,193 60.01% 95.79% 
Velvet 37 1,544 2,640 1,544 2,285,250 75.47% 96.20% 
Corrected Sequences        
CA 14 48,452 48,452 48,452 48,452 99.90% 99.93% 
SOAPdenovo 87 26,424 26,424 26,424 48,850 99.90% 99.93% 
Velvet 87 26,430 26,430 26,430 52,886 99.90% 99.93% 

Table S1. Assembly of uncorrected PacBio Data. The most popular OLC and de Bruijn graph assemblers were 
compared on uncorrected PacBio data. For CA, the k-mer size specified is the minimum length used to seed an 
overlap. Not surprisingly, neither the OLC nor the de Bruijn graph assemblers are able to deal with the high rate of 
sequencing error present in PacBio RS data, even on this simple phage genome. All assemblies cover only a fraction 
of the genome at low identity while making many errors. After correction, the assemblers are able to reconstruct the 
genome accurately, however, only the OLC assembler is able to reconstruct the entire genome in a single contig 
(versus 5 for SOAPdenovo and 23 for Velvet). 



Overlap detection. Figure S2 reports the estimated k-mer size required to detect overlaps at 
various error rates. 

	  
Figure S2. Random errors obscure overlap seeds. 20X coverage of 1000bp reads was simulated for E. coli K12 at 
four error rates and the fraction of known overlapping reads sharing an exact match of at least seed-length bases 
was measured. The current PacBio error rate falls between the black bar (20% error) and the red bar (15% error). At 
this rate, a seed length of approximately 10 is required for good overlap discovery. Shorter seed sizes complicate the 
assembly graph (since any repeat longer than seed size is must be resolved via read threading or paired-ends). 

Simulated overlap error. We developed a simulated alignment program to calculate expected 
overlap error between PacBio sequences. The program assumed 83.7% accuracy, with a 11.5% 
insertion, 3.4% deletion, and 1.4% substitution rate. Reads were simulated from the same 
position of a reference E. coli K12 and randomly mutated. The resulting sequences were aligned 
and cumulative overlap error computed. Whenever two sequences had the same type of error in 
the same position, the error was ignored (that is if both reads had the same insertion at a single 
position). The simulation shows that the overlap error is approximately additive (1.87 times the 
single-sequence error) with the average error in a single sequence being 16.8% and the total error 
of 31.55% (versus 33.76% if the error were exactly additive) due to some pairs of sequences 
sharing an error at the same position. Similarly, simulating PacBio to Illumina overlaps, where 
Illumina has 99% accuracy (with all errors being substitutions), results in a total error of 17.45% 
(versus 17.83% if the error were exactly additive). Therefore, the expected overlap error between 
a high-accuracy technology (such as Illumina) and PacBio is approximately half (1.8 times) of 
one between two PacBio sequences. This observation is supported by real E. coli K12 data in 
Figures S3a and S3b below. 



 
Figure S3a. The cumulative percentage of overlaps detected below a given overlap error threshold is shown. The 
cumulative % of overlaps is calculated relative to the total number of overlaps detected below 25% error. As PacBio 
overlaps are expected to be 31.55% error (beyond the maximum limit of the overlapper), the curve above overestimates 
the percentage of true PacBio overlaps detected. For both 454 and Illumina, over 80% of the overlaps are detected by 3% 
error. By contrast, on PacBio, only 10% are detected at 15% error. Results shown using E. coli K12. 



 
Figure S3b. The cumulative percentage of overlaps between 454 and PacBio is shown. As in Figure S2A, the % of 
overlaps is computed out of the total overlaps detected below 25% error, overestimating the percentage of PacBio 
overlaps detected. As expected, the 454-PacBio overlaps are found much faster than PacBio-PacBio overlaps with 
approximately 75% detected by 10% error (versus less than 40% for PacBio-PacBio) and approximately 90% at 16% error. 
This corresponds well with our prediction that expected Illumina-PacBio overlaps error rate is 17.45%. Results shown 
using E. coli K12. 

Comparison of OLC and de Bruijn assemblers. To test the effect of read length on assembly 
we used compared real Illumina to simulated PacBio data for Saccharomyces cerevisiae S228c. 
We used SOAPdenovo v1.05 to demonstrate the de Bruijn approach. Parameters -all -K 63, 
and -all -K 127 were used. Celera Assembler was used to demonstrate the OLC approach 
using parameters merSize=14 unitigger=bogart. Contigs were broken on error as 
outlined below in the Results section. The baseline SOAPdenovo assembly had an N50 of 35 
Kbp. 



Test	  Data	  
Genome Reference Sequencing 

Institute 
Technology # Sequences Mated Median 

(bp) 
Max 
(bp) 

Lambda NEB3011 lambda.fasta PacBio PacBio RS 7,550 - 548 3,440 
  simulated Illumina 25,000 200bp 100 100 
Escherichia coli K12 NC_000913 PacBio PacBio RS 251,762 - 540 3,787 
  Illumina UK Illumina 22,720,100 500bp 100 100 
Escherichia coli C227-11 N/A PacBio PacBio RS 258,301 - 2,098 22,841 
  PacBio PacBio CCS 617,561 - 423 1,915 
   simulated (wgsim) Illumina 4,125,500 500bp 100 100 
  simulated (wgsim) Illumina 2,749,218 3Kbp 100 100 
  simulated (wgsim) Illumina 2,749,218 6Kbp 100 100 
Escherichia coli 17-2 N/A PacBio PacBio RS 212,399 - 2,188 17,696 
  IGS Illumina 30,282,936 300bp 100 100 
Escherichia coli JM221 N/A PacBio PacBio RS 211,366 - 2,553 18,564 
  IGS 454 FLX Titanium 1,174,121 - 470 612 
Saccharomyces cerevisiae S228c NC_001133:NC_001148 CSHL PacBio RS 969,445 - 588 8,495 
  CHSL Illumina 57,886,340 300bp 76 76 
Melopsittacus undulatus N/A PacBio PacBio RS 4,176,242 - 1,308 16,947 
  Illumina UK Illumina 660,997,244 500bp 101 101 
  Roche/Duke 

University 
454 FLX 
Titanium/Titanium+ 

48,337,115 3,8,20Kbp 385 2,038 

  BGI Illumina 2,031,639,664 0.22Kbp, 
0.5Kbp, 
0.8Kbp, 

2Kbp, 
5Kbp, 

10Kbp 

90 150 

Zea mays B73 RefGen v2 DOE JGI PacBio RS 131,257 - 1,027 5,613 
  DOE JGI Illumina 230,000,000 - 250 250 

Table S2. Sequence data used to test correction/assembly pipeline. The eight datasets used for testing the 
PBcR assembly and correction pipeline. The PacBio RS lengths are reported before correction. The simulated data 
was generated by wgsim from the SAMTools package (version 0.1.16) (Li et. al. 2009). Simulated sequences as well 
as the lambda reference genome can be downloaded from http://www.cbcb.umd.edu/software/PBcR/index.html. The 
Zea mays project is hosted at http://www.maizesequence.org. 

We have tested the algorithm using eight hybrid datasets. The datasets below include all 
available data. Whenever subets of coverage were used, a random subset was selected using the 
CA gatekeeper command. First a new gatekeeper store was created using the command 
gatekeeper –T –F –o tmp.gkpStore pacbio.frg. A subset was created using the 
command gatekeeper -allreads –dumpfrg –randomsubset 0 <total bp> 
tmp.gkpStore. A genome size of 5.5 Mbp was used for E. coli C227-11 and 5.0Mbp for E. 
coli 17-2 and E. coli JM227. For the subset tests of E. coli 17-2 and E. coli JM227, random 
subsets were selected as a percent of total available sequence (up to a max of 275 Mbp 
corresponding to 50X of a 5 Mbp genome). 
 
Lambda PacBio RS sequences and simulated data are available from 
http://www.cbcb.umd.edu/software/PBcR/index.html.  
 
Escherichia coli PacBio RS sequence is available from the PacBio DevNet Portal 
(http://www.pacbiodevnet.com/Share/Datasets/E-coli-K12-Resequencing). The 
Illumina sequences used for correction are available under 
SRX000429.  
 
The genomes Escherichia coli C227-11, Escherichia coli 17-2, and Escherichia coli JM221 
PacBio RS and PacBio CCS sequences are available from the PacBio DevNet Portal 



(http://www.pacbiodevnet.com/Share/Datasets/E-coli-Outbreak) (Rasko, DA et al. 2011). The 
University of Maryland Institute for Genome Sciences generated the Illumina/Roche 454 
sequences. The UMD SOM data as well as the simulated Illumina sequences are available at 
http://www.cbcb.umd.edu/software/PBcR/index.html. For correction, we generated Illumina data 
from the assembly published in (Rasko, DA et. al. 2012) using wgsim. The simulated Illumina 
mate-pairs and paired-ends for Illumina assembly were generated from the completed outbreak 
genome by BGI (ftp://ftp.genomics.org.cn/pub/Ecoli_TY-2482/Escherichia_coli_TY-
2482.chromosome.20110616.fa.gz) using wgsim. 
 
Saccharomyces cerevisiae S228c Illumina and PacBio RS sequences were generated by Cold 
Spring Harbor Laboratory and can be downloaded at 
http://www.cbcb.umd.edu/software/PBcR/index.html. 
 
Melopsittacus undulatus consisted of Illumina, 454, and PacBio sequencing. Duke University 
and Roche generated the 454 sequences. The Illumina sequencing used for correction was 
generated by Illumina UK using the TruSeq3 chemistry. The Illumina sequence used for 
ALLPATHS-LG assembly was generated by BGI. Pacific Biosciences generated the PacBio RS 
sequences. The sequences are available from the Assemblathon project 
(http://assemblathon.org/).  
 
RNA-Seq sequencing of Zea mays B73 was performed using both Illumina and PacBio RS at the 
DOE Joint Genome Institute. A total of 125M Illumina GAII paired-end reads 
and 388M Illumina HiSeq 150 bp reads were generated with a mean insert size of 248 bp. The 
overlapping paired-end reads were joined together to form 250 bp unpaired fragments using the 
method of Rodrigue S et al. (Rodrigue S et al. 2010). A total of 230M pairs (460M reads) could 
be confidently joined. These 250 bp sequences were used for correction. The maize RefGen v2 
assembly was used for accuracy assessments and is available from 
http://www.maizesequence.org. 
 



Correction	  and	  Assembly	  Evaluation	  
Correction and assembly. The correction pipeline was run using the command pacBioToCA 
(Supplementary File: wgs-correction.tar.bz2) with the parameters -length 500 -
partitions 200 -l pacbio -t 16 -s pacbio.spec. For short high-identity 
sequences (< 100 bp, only S. cerevisiae in our dataset) the parameters to the consensus module 
were modified to be make-consensus –x removed.seq –w 5 –e 0.03, as 
suggested by the AMOS documentation. A maximum of 100X of raw PacBio sequences was 
used for correction. Illumina-only assemblies were generated using the Celera Assembler (with 
the parameters overlapper=ovl merSize=14 unitigger=bogart) and 
SOAPdenovo v1.05 (with parameters all -K 63) followed by GapCloser (with default 
parameters) with only the best reported in the text. For Melopsittacus undulates, we also ran 
ALLPATHS-LG using the commands PrepareAllPathsInputs.pl PHRED_64=True 
PLOIDY=2 and RunAllPathsLG THREADS=32 PRE=allpaths-lg 
DATA_SUBDIR=assembly RUN=myrun REFERENCE_NAME=.. Hybrid assemblies were 
generated using Celera Assembler (Supplementary File: wgs-assembly.tar.bz2) modified to 
accept sequences up to 30,000 bp using the BOGART unitigger (overlapper=ovl 
merSize=14 unitigger=bogart). The Celera Assembler includes three unitigger 
options: utg, bog, and bogart. The utg unitigger was originally developed for Sanger sequences. 
BOG was developed to handle 454 pyrosequencing data (Miller et al 2008). The BOGART 
unitigger (Walenz, personal communications) has been developed to better handle high-coverage 
datasets, such as those generated by Illumina instruments while matching BOG’s performance on 
pyrosequencing data. Thus we have focused our modifications/testing of long-read support 
within the Celera Assembler on BOGART. Our correction pipeline (as well as BOGART) has 
been distributed with the Celera Assembler as of version 7.0. 
	  
Performance and correction coverage. To determine a suitable compromise between 
correction accuracy and run-time, 100 bp Illumina sequences for E. coli K12 were subset from 5-
200X and used to correct single-pass PacBio reads. Performance (Figure S4) and correction 
accuracy as well as assembly contiguity (Figure S5) were evaluated. The long read accuracy 
greatly improves as Illumina coverage increases from 5 to 50X but improvements continue with 
diminishing returns at higher coverage. Furthermore, the correction pipeline required 135.46 
CPU hours (2.5hrs wall-clock time) and 7.5GB of peak memory for the 200X correction for an 
effective parallelism of 56 cores, and only 13.64 CPU hrs (0.5hrs wall-clock time) and 2.1GB of 
peak memory for the 50X case (for an effective parallelism rate of 32 cores). To test scalability 
to eukaryotic genomes, the pipeline was applied to M. undulates. 660M Illumina sequences were 
used to correct 4M PacBio RS sequences. The correction completed in 20K CPU hours (6.75 
days wall-clock time) using a peak of 176GB of memory and 121 effective cores. Based on these 
performance results, correcting a human genome with matching coverage would take 61K CPU 
hours, which can be completed in 10.16 days with an effective parallelism rate of 250 cores. The 
RNA-Seq dataset was corrected in a total of 3.56 days of wall-clock time and a peak of 225GB 
of memory. However, this correction was performed on a different computer cluster and before 
memory usage was improved, making the result not directly comparable to the above.  
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Figure S4. Performance of the correction algorithm scales linearly with increasing coverage. Performance of 
the correction pipeline as Illumina coverage is varied from 5X to 200X. The left vertical axis shows the time (in 
seconds) for the pipeline to complete. The right vertical axis shows (in gigabytes) the peak memory used by the 
pipeline. The peak memory is the maximum memory in use on a single machine by the pipeline. An average of 41.5 
overlap jobs (min = 10, max = 97) were created and submitted to an SGE grid. For the correction step, we used 16 
threads and 200 parallel consensus jobs to generate the corrected sequence.



 

	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  

	  
Genome Coverage % Idy (Reads) % Cov % Chimera % Trim 

E. coli K12 5X 99.95% 99.91% 0.74% 0.12% 

 10X 99.98% 99.95% 1.17% 0.13% 

 20X 99.99% 99.96% 1.24% 0.14% 

 30X 99.99% 99.93% 1.35% 0.47% 

 40X 99.99% 99.93% 1.62% 0.50% 

 50X 99.99% 99.92% 1.72% 0.49% 

 60X 99.98% 99.91% 1.94% 0.52% 

 70X 99.98% 99.92% 1.96% 0.57% 

 80X 99.98% 99.93% 2.03% 0.59% 

 90X 99.98% 99.91% 1.83% 0.75% 

 100X 99.98% 99.92% 1.91% 0.62% 

 200X 99.96% 99.91% 3.21% 0.67% 

Figure S5. Increased coverage with Illumina sequences allows increased error correction. a) The percentage 
of original PacBio reads remaining after correction as Illumina sequence coverage is increased. Results are 
presented for E. coli K12. For assembly contiguity, the contig N50 (assembly only the PBcR sequences, after 
breaking at mis-joins) is reported. As the figure shows, there is a large gain as coverage increases from 5X to 30X, 
after which the return from additional sequencing begins to diminish, leveling off at 50X. The lower assembly 
contiguity at 200X represents a minor 4.86% percent drop in uncorrected N50. This lower contiguity is due to a 1.3% 
increase in chimera (to 3.61%) at 200X Illumina coverage. At this extreme depth, erroneous Illumina sequences 
begin to confirm native PacBio chimeras by random chance and these chimeras negatively affect the OLC assembly: 
more aggressive trimming of Illumina sequences before correction (for example by Quake (Kelley et al 2010)) 
reduces the chimera rate to 1.89% and eliminates the N50 drop. However, PBcR correction at this level of coverage 
is unnecessary and not recommended. b) The coverage of high-identity sequences does not have a significant 
impact on correction accuracy. While the throughput is lower (as shown in (a)), the identity and coverage remains 
above 99.9%. 
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Correction accuracy. The characteristics of the corrected data are examined by comparison to a 
reference genome. E. coli K12 is used as the benchmark. Figure S6a shows the raw sequences 
produced by the PacBio instrument. The accuracy of reads has a peak at 89.01% (median = 
89.13%), as expected. A significant fraction (50%) of the PacBio sequence cannot be accurately 
mapped to the reference. Figure S6b shows that the accuracy of the corrected reads with respect 
to the reference is 99.99% (median = 100%). The length of the sequences is shorter since 
chimeric sequences have been split during correction, but median length is not drastically 
affected (median = 848 vs median = 767). The corrected reads are also 99.96% (median = 100%) 
covered by a single match to the reference (Figure S4b).	  
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Figure S6. A comparison of PacBio length, coverage, and identity versus a reference before (a) and after (b). Here, E. coli 
K12 is shown. Alignment was performed using MUMmer 3.23. Matched were filtered using delta-filter –q to retain the best matches 
for each position of a sequence. a) the raw PacBio reads after quality filtering generated by the instrument. The % coverage is 
calculated as the total fraction of the fragment that could be mapped (in any number of matches) to the reference. The % identity is 
calculated as the average (weighted by match length) of all matches for a sequence. A significant fraction of sequences could not 
be aligned to the sequence and are reported as having 0% for coverage and identity: their identity is below the sensitivity of the 
aligner. b) the same sequences after correcting using 50X of Illumina sequencing data. The resulting sequences are shorter 
(having a maximum of 3 Kbp versus 4 Kbp) due to breaking at positions with no short-read coverage. However, all corrected reads 
can be mapped to the reference, with the vast majority (over 95%) mapping at 100% identity over 100% of their length. 
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To further evaluate correctness accuracy, we selected regions of the genome that appear 
repetitive and compared the correction error rates within repeat regions to error rates in the full 
genome. Repeat regions were identified by mapping Illumina sequences used for correction to 
the reference using bowtie 0.12.7 (bowtie –-all –p 16). Any sequences with more than a 
single mapping was assumed to originate from a repeat. All genomic regions covered by at least 
one multiply-placed read were considered repetitive. Any PBcR reads intersecting these regions 
were extracted from the full PBcR set. PBcR quality was evaluated for the full PBcR set and the 
repeat-only PBcR set for both E. coli K12 as well as S. cerevisiae S228c. To control for 
differences between the sequenced genome and the reference, the original uncorrected PacBio 
RS sequences were also evaluated. Only PacBio RS sequences with a mapping were used to 
tabulate statistics. The results are presented in Table S3. 
 

  All Sequences Repeat Region Sequences 

Genome Sequences % Good 
Bases % Idy % Cov % Chimera % Trim % Good 

Bases % Idy  % Cov % Chimera % Trim 

E. coli K12 Uncorrected 30.46% 89.18% 99.77% 2.02% 60.96% 44.06% 89.01% 99.78% 4.12% 71.64% 

 PBcR 97.61% 99.99% 99.92% 2.02% 0.33% 96.04% 99.94% 99.80% 3.37% 0.57% 

S. cerevisiae S228c Uncorrected 13.78% 88.10% 99.63% 1.23% 22.81% 38.59% 88.23% 99.58% 4.56% 40.91% 

 PBcR 98.27% 99.90% 99.93% 1.46% 0.33% 94.52% 99.51% 99.24% 3.15% 2.85% 

Supplementary Table S3 – PBcR Repeat Correctness Results.  The repeat regions within genomes were selected by 
mapping. Both original PacBio RS sequences as well as the PBcR intersecting those regions were selected and their quality 
evaluated as in Table 1. It is expected that selecting for repeat regions biases the selection towards naturally variable 
regions of the genome. Therefore, to identify correction errors versus true variation in the reads, the error rates were 
compared to the original PacBio RS reads. Columns are defined as in Table 1 in the manuscript: % Good Bases: the 
percentage of total sequence in non-chimera and non-trim sequences. % Idy (Identity): average identity of good corrected 
reads to the reference. % Cov (Coverage): average coverage of good corrected reads by a single match to the reference. % 
Chimer: the percentage of corrected bases within reads with a split mapping to the reference. % Trim: the percentage of 
corrected bases within reads with a single match to the reference over less than 99.5% of their length. 

As expected, the corrected repetitive regions show slightly higher rates of chimera and trim 
errors than the usual. However, in all cases, the PBcR pipeline trims bad sequences while 
retaining over 99% identity and trim. 
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Coverage estimate. Figure S7 shows an example histogram on E. coli K12. The histogram has a 
pronounced peak at 20X, corresponding to the PacBio coverage of this dataset. The vertical line 
shows the cutoff chosen by our algorithm. Figure S8 shows the coverage of the corrected PacBio 
RS sequence by Illumina data. The histogram has a peak at 50X, the Illumina coverage used for 
correction. 
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Figure S7. Histogram for the number of PacBio long-read sequences each Illumina short-read sequence maps to for E. 
coli K12. a) The peak is at 20, the coverage of the reference in long reads, and there is a long tail of reads with many matches, 
coming from repeat regions of the genome. The vertical line shows the repeat threshold identified by our algorithm, 28 in this case. 
Only the top 28 matches for each Illumina sequence will be used for correction. The remaining matches are assumed to be 
spurious due to a single Illumina sequence mapping to multiple instance of a genomic repeat. b) The histogram of Illumina read 
mappings after removing spurious repeat-induced mappings and short PacBio RS sequences. 
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Figure S8. Histogram of the Illumina short-read coverage for each corrected position of a PacBio sequence for E. coli 
K12. The peak is at 50, the coverage of the Illumina short-reads used for correction. To correct for PBcR read ends, coverage is 
not computed for the first and last 100 bp of each PBcR sequence (100 bp corresponds to the Illumina sequence length). The Y-
axis shows the frequency while the X axis shows the coverage. The normal shape of the distribution shows the PacBio reads are 
uniformly covered by Illumina sequences at the expected depth, with very few regions of unusually high or low Illumina coverage. 



Correction by coverage. Figure S9, evaluates the ability of high-coverage to correct for 
sequencing errors. With sufficient coverage, even high error rates can be compensated for.  
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Figure S9. Coverage can overcome most random errors. 1,000 bp reads for E. coli K12 were simulated 
with random errors and the resulting consensus accuracy was measured. Even with high errors, coverage 
over 10X is sufficient to generate an accurate consensus. The periodic fluctuation in consensus error rate is 
an artifact of the tie-breaking scheme used in the consensus simulation (even numbers of reads can have 
ties and odd cannot). 

	  

	  



Validation of contigs. The contigs from each assembly were aligned to a reference. For 
SOAPdenovo, contigs were obtained by splitting scaffolds at each N. Statistics were tabulated 
using custom scripts using a fixed genome size (equal to the reference length when available) 
across all assemblies.  

For evaluating correctness, alignment statistics and mis-assemblies were tallied using the 
program dnadiff (Phillippy et al. 2008) from MUMmer v3.23 (Kurtz et al. 2004).  dnadiff 
operates by constructing local pairwise alignments between a reference and query genome using 
the Nucmer aligner.  The aligned segments are then filtered to obtain a globally optimal mapping 
between the reference and query segments, while allowing for rearrangements, duplications, and 
inversions.  This technique was later described in detail by Dubchack et al. as the SuperMap 
algorithm (Dubchak et al. 2009). Conveniently, this method identifies both a one-to-one 
mapping of segments as well as any duplicated sequences. When applied to assembly mapping, it 
can be used to measure the quantity and types of common mis-assemblies.  
To create the alignments contigs were aligned using nucmer (Kurtz et. al. 2004) with the options 
(-maxmatch –l 30 –banded –D 5). Combined with its default options, this invocation 
requires a minimum exact-match anchor size of 30 bp, and a minimum combined anchor length 
of 65 bp per cluster.  Clusters are further required to have no more than 90 bp separation or more 
than 5 inserted bases between any two adjacent anchors. Acceptable clusters are then used to 
seed banded Smith-Waterman alignments (Smith and Waterman 1981). After running nucmer, 
alignments with less than 95% identity or more than 95% overlap with another alignment were 
discarded using delta-filter. dnadiff was then executed on the remaining alignments with default 
parameters, and correctness statistics were tabulated from its output. Average identity was 
computed on the one-to-one aligned segments, ignoring duplicated bases. To calculate a 
corrected N50, the resulting one-to-one alignment lengths were used. As alignments are broken 
at any alignment error, the alignment sizes correspond to the pieces of the assembly that are 
error-free. This correctness method has been previously used to evaluate assemblies for the 
GAGE project (Salzberg et al 2011). Full correctness results on assemblies from Table 2 (with 
available references) are shown in Table S4. 

Genome Assembly N50 Corrected 
N50 Ratio % IDY Inversions Relocations Translocations Total 

Lambda NEB3011 Illumina 48,492 48,492 100.00% 99.92% 0 0 0 0 

 PBcR 48,444 48,444 100.00% 99.93% 0 0 0 0 

E. coli K12 Illumina 100,338 83,037 82.76% 99.99% 0 7 0 7 

 PBcR 71,479 68,309 95.57% 99.99% 1 2 0 3 

 
Illumina + 
PBcR 

93,048 89,431 96.11% 99.99% 7 3 0 10 

S. cerevisiae S228c Illumina 73,871 49,254 66.68% 99.99% 0 5 8 13 

 PBcR 62, 898 54,633 86.86% 99.97% 2 7 14 23 

 
Illumina + 
PBcR 

82,543 59,792 72.44% 99.97% 2 5 25 32 

Supplementary Table S4 – Assembly correctness Results. N50: Contig N50 size. Corrected N50: corrected N50 
length computed as in (Salzberg et al 2011). Ratio: The fraction of the corrected N50, relative to the original—a larger 
percentage indicates a more correct assembly. Identity: The average identity of the assembly to the reference. 
Inversions: an inverted assembly with respect to the reference. Relocation: chimeric assembly region corresponding 
to a large jump in the reference sequence. Translocation: A combination of sequences from two different 
chromosomes into a single assembled sequence. While the absolute number of errors is sometimes higher in the 
PBcR hybrid assemblies, the ratio of corrected N50 to original is always higher. This means the errors are in short 
contigs (chaff) that is any contig over 200 bp. Since every PBcR read is over 200 bp, chaff will include any originally 
chimeric untrimmed PacBio RS sequence. Future work remains to identify and remove this chaff from the assembly 
output. 



Performance versus read length. The average read length for each assembly in Table 2 was 
calculated and plotted vs N50 (scaled by genome size). The result is shown in Figure S10. Two 
clear outliers, lambda and parrot are visible. This is expected, as lambda phage has a low repeat 
content while parrot is a complex eukaryote sequenced to low coverage. For the others, the graph 
indicates strong agreement between average read length and assembly contiguity. While there 
are only five samples used for the model, four are similar E. coli genomes with PacBio read 
length being the major variable. We believe this trend explains much of the variation in 
contiguity observed in Table 2. 

100 200 500 1000

1e
−0

3
1e
−0

1
1e

+0
1

Average Read Length (Log−Scaled)

N
50

 (a
s 

a 
Pe

rc
en

t o
f G

en
om

e 
Si

ze
) L

og
−S

ca
le

d

Yeast

Ecoli_K12

Ecoli_17−2

Parrot

Ecoli_JM211

Ecoli_227

Lambda

 
 
 

Figure S10. Assembly contiguity is highly correlated with average read length. The average read 
length for assemblies from Table 2 is plotted against assembly contiguity (calculated as N50 scaled by 
genome size). There is a clear visual trend (supported by a log-linear model) of increasing contiguity as read 
lengths increase. The two outliers are present due to their relative genome complexity and coverage when 
compared with the other assemblies in the table. 

	  

	  

	  



Repeat resolution. Repeat resolution occurs when a read spans a repeat and is anchored by the 
surrounding unique sequence. Longer reads are capable of spanning a greater variety of repeats, 
leading to better assemblies. Repeat classes fall in two broad categories: interspersed and 
tandem. Long-range read pairing, either with Illumina or 454, can be used to resolve many 
simple interspersed repeats. Here the potential advantage of long reads is in library prep, by 
removing the need for paired libraries, which can be difficult and costly to construct. Also, pairs 
can fail to resolve more complex structures where the short ends cannot be uniquely anchored on 
either side of a single repeat. Similarly, tandem repeats can be very difficult to resolve using only 
read pairing. For example, a 10 bp element repeated 100 times is too long (1,000 bp) to be 
spanned by a second generation read, and pair libraries do not have the resolution to determine 
the number of copies (the difference between 99 and 100 copies is only 10 bp, which is shorter 
than the typical size variation seen in 1,000 bp insert libraries). These types of repeats, such as 
VNTRs and STRs, have important biological functions and make powerful genotyping tools, so 
their correct assembly is important. The long, continuous PacBio reads allow the assembly of 
such sequences, which is not always possible with other technologies. Figure S11 shows three 
common types of repeats resolved by PBcR reads in bacterial genomes that were left un- or mis-
assembled using 454 reads: interspersed, inverted, and tandem. 



  

a 

b 

c 

Figure S11. Example Repeats Resolved by PBcR Sequences in E. coli JM221. A dotplot shows the 
alignment of a single 1 Mbp hybrid PBcR contig to the corresponding 454 contigs. This single PBcR contig 
closes 18 gaps left in the 454 assembly. Each horizontal dotted line indicates the boundary of a 454 contig 
and the contigs are arranged in order of their appearance in the PBcR contig. Three repeats resolved by 
PBcR but not 454 are highlighted. a) The two black arrows point to 1.4 and 1.8 Kbp gaps in the 454 
assembly. These represent two different interspersed repeat families that appear in the genome in multiple 
copies, but were collapsed into single contigs elsewhere in the 454 assembly. Because the long PBcR reads 
were able to span these repeats, the gaps were closed. b) The blue, negative diagonal alignments indicate 
an inverted repeat of approximately 800 bp bounding a region of 5 Kbp. The 454 reads were unable to 
resolve this repeat structure, but the region was closed by PBcR reads. c) This alignment motif represents a 
tandem repeat with a unit length of ~100 bp, repeated 4 times, spanning ~400cbp. The 454 assembly has 
mis-assembled the region by inserting an extra copy of the repeat. This type of tandem repeat “slippage” 
(either expansion or collapse) is a common mis-assembly seen in second-generation data and is very 
difficult to resolve without a full read spanning the entire region. 

	  



Illumina/coverage evaluation. Unlike de Bruijn approaches, which often benefit from high 
depth of coverage, extreme coverage (e.g. > 100X) can be detrimental to OLC assemblers. Too 
little coverage leads to a fragmented assembly because of sequencing gaps, and too much 
coverage accumulates sequencing errors in the string graph, which can fragment the assembly. 
To seek an appropriate coverage balance, single-pass PacBio reads for E. coli C227-11 were 
corrected using both 25X and 50X of CCS data. The hybrid reads were then assembled at 25, 50, 
and 75X coverage. The assembly quality plateaus when hybrid coverage matches the correction 
read coverage (e.g. 50X CCS plus 50X hybrid, Table S5). Intuitively, this is because the 
correction pipeline splits sequences at short-read coverage gaps. Therefore, the hybrid assembly 
is inherently limited by the correction read coverage. This potential limitation could be overcome 
in later stages of assembly by using the uncorrected PacBio reads for scaffolding, for example. 
 
We also evaluate using the longest PBcR sequences rather than a random subset. Using the 
longest 20X of PBcR sequences leads to an improved assembly when compared with the random 
sampling approach, improving N50 by 81% and the max contig by 8% (Table S5). Thus, when 
high-coverage PBcR data is available, subsampling the longest ~20X of sequences is 
recommended. 
 
To compare the effect of PBcR reads versus long-range pairs, we simulated ideal 3 Kbp and 6 
Kbp Illumina long-range libraries at 50X coverage each for the E. coli C227-11 genome (with 
10% standard deviation on insert length and no chimeric pairs or size/orientation artifacts). The 
results are included in Table S5 below. The PacBio only (corrected by CCS) outperforms this 
ideal Illumina assembly. The PacBio sequences combined with Illumina short paired-end 
sequencing also outperforms the Illumina assembly. These results suggest the PacBio RS 
sequences are a practical alternative to both short and long-range inserts. 
 
	  

Organism Technology Reference 
bp 

Assembly 
bp 

# Contigs Max Contigs N50 Contigs 

E. coli C227-11 Illumina 100X 500bp 5,504,407 5,010,115 68 301,145 102,139 
 Illumina 50X 500bp + 50X 3Kbp  5,268,399 44 521,615 273,314 
 Illumina 50X 3Kbp + 50X 6Kbp  5,267,648 36 763,958 364,181 
 Illumina 50X 500bp + 50X 3Kbp + 50X 6Kbp  5,288,424 38 546,066 287,929 
 PacBio 50X (Corrected by 50X Illumina)  5,342,166  35 915,367 318,612 
 PacBio 50X + Illumina 50X 500bp  5,490,446 44 1,027,387 317,661 
 PacBio 25X (Corrected by 25X CSS)  5,207,946 80 357,234 98,774 
 Pacbio 50X (Corrected by 25X CSS)  5,204,812 83 340,018 89,556 
 PacBio 75X (Corrected by 25X CSS)  5,249,417 87 343,158 84,817 
 PacBio 25X (Corrected by 50X CSS)  5,397,525 41 569,739 216,129 
 PacBio 50X (Corrected by 50X CSS)  5,476,824 39 1,057,326 365,964 
 PacBIo 75X (Corrected by 50X CSS)  5,601,310 55 642,068 308,312 
 PacBio Longest 20X (Corrected by 50X CCS)  5,501,548 22 1,167,891 (8.54%) 684,891(81.94%) 

Supplementary Table S5 - Results on PacBio correction. Technology: the read data used for assembly. 
Reference bp: the number of base pairs in the reference sequence used for N50 calculation. Total bp: the total 
number of base pairs in all contigs. # Contigs: The number of contigs comprising the assembly. Only contigs ≥ 10,000 
bp are included in results. Max Contig Length: The length of the max contig in the assembly. N50: Contig N50 size. 
The number in parenthesis indicates the assembly gain when using the longest sequences versus a random subset. 



Prediction of future chemistry. To estimate effects of increasing read length for E. coli K12, 
we generated several exponential distributions with increasing medians and assembled the 
resulting error-free read sets for each. We found that the exponential distribution with a median 
of 1,600 assembles E. coli K12 into a single chromosome. Given our current observed sequence 
loss due to trimming (median 2,553 trimmed to 1,216 for E. coli JM221, or 48% after trim), this 
corresponds to a median, uncorrected length of approximately 3,350. However, PacBio read 
lengths do not exactly follow an exponential distribution and the simulations always assemble 
better than real data. In addition, it is difficult to predict how the length distribution of future 
chemistries will scale. Thus, we roughly estimate that a median, uncorrected length of 3.5 Kbp 
will enable single contig assemblies for E. coli K12 at 50X coverage. At this level of coverage, 
enough of the reads are long enough to span the largest repeat family in E. coli, which is 
approximately 5.5 Kbp. A median read length of 3.5 Kbp represents a seemingly achievable 40% 
length increase over the current median length produced by the PacBio RS. Until then, it is 
sufficient to sequence at high depth of PacBio coverage and subsample only the longest reads to 
maximize assembly quality (Table S5). 

Comparison of simulated PacBio and 454 FLX+ assemblies. To compare assembly contiguity 
between FLX+ and PacBio sequencing, we generated error-free simulated sequences for the E. 
coli K12 genome. Using the observed read lengths in the parrot genome assembly for the FLX+ 
sequences as well as the post-correction PBcR sequences, we generated 18X coverage for each 
dataset. Both datasets were assembled using Celera Assembler (overlapper=ovl 
merSize=14 unitigger=bogart). We then calculated assembly metrics as in Table 2 in 
the manuscript. The FLX+ simulated assembly generated a total of 42 contigs with a maximum 
contig of 343 Kbp and an N50 of 179 Kbp. In contrast, the PBcR simulated assembly generated a 
total of 11 contigs with a maximum of 1,261 Kbp and an N50 of 1,204 Kbp. The increased 
contiguity of the PBcR assembly is due to the exponential read distribution generated by the 
PacBio RS sequencer, with over 30% of the PBcR bases being in reads of 2 Kbp or greater. By 
contrast, all FLX+ sequences were shorter than 2 Kbp. 



Melopsittacus undulatus Assembly Evaluation 
Parrot genome assembly complexity. Following the method presented in (Schatz et al. 2010), 
we evaluated the repeat complexity of the parrot genome in comparison with several other 
genomes in Figure S12 using the tallymer tool (Kurtz et. al. 2004). This analysis is sensitive to 
assembly quality, so we measured both the Illumina and hybrid assemblies of parrot. If an 
assembly over-collapses repeats, for example, the assembly will measure more unique than the 
truth. The figure shows that the parrot genome is at least as complex to assemble as the human 
genome (as measured for the Illumina assembly) and is likely more comparable to the fruit fly 
and mouse genomes (as measured for the hybrid assembly). The mouse genome, for example, is 
known to have 2.25 to 3.25 fold more simple sequence repeats than the human genome 
(Chinwalla et al 2002), even though it has fewer interspersed repeats. In many cases, it is the 
simple repeats that are the most difficult to assemble. Even though S. cervisiae has a small 
genome, it is also complex for long k relative to its genome size. This predicts that the PBcR 
pipeline would perform well on other high-complexity genomes, such as human, since it has 
performed well on both yeast and parrot. 

 

Figure S12. k-mer uniqueness of parrot versus six well-known genomes. The ratio is defined here as 
the percentage of the genome that is covered by unique sequences of length k or longer. The horizontal axis 
shows the length in base pairs of the sequence length k. The curves of more unique genomes are at the top 
left (e.g. E. coli) and less unique genomes at the bottom right (e.g. M. musculus). For example, 97.5% of the 
human genome is contained in unique sequences of 200 bp or longer. In contrast, only 95% of the 454-
PBcR-Illumina hybrid parrot assembly is contained in unique sequences at the same 200 bp length 
(parrot/Hybrid).  
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Illumina-based correction. In addition to the PacBio RS correction performed using 454 data, 
we also corrected 5.5X PacBio using 54X of Illumina paired-end reads, producing 3.75X of 
sequences for a throughput of 68.22%. We validated the Illumina-corrected sequences by 
mapping to all parrot assemblies (except our own) submitted for the Assemblathon 2 
(http://assemblathon.org, Earl et al 2011). For this diploid genome, each assembly is a mosaic of 
the two haplotypes, so only the best mapping for each PBcR read was considered. Using this 
method 99.6% of the PBcR-Illumina reads have at least one mapping, and 93.7% map end-to-
end with an average identity of 99.5%. Of the 6.3% of reads with fragmented mappings, 4.2% 
have breakpoints internal to a contig, which provides a rough estimate of chimerism. The 
remaining 2.1% map to contig boundaries. 
 
Paired-end satisfaction. The Celera Assembler generates a file named asm.posmap.mates 
specifying the status of each paired-end within the assembly. There is also an asm.posmap.frgctg 
listing each fragment’s location within the assembled contig. The output files were parsed to 
extract paired-ends where both sequence ends fell in one contig (denoted by a suffix of a or b in 
Celera Assembler) from the asm.posmap.frgctg file. Next, the status for each selected pair was 
extracted from the asm.posmap.mates file. The possible statuses include good, badLong (above 3 
standard deviations from the mean), badOuttie (incorrect orientation), badSame (incorrect 
orientation), badShort (below 3 standard deviations). All pairs not marked as good were 
considered bad for assembly correctness. A total of 3,242,006 paired-ends were marked good in 
the 454-only assembly, 3,281,360 in the 454-PBcR-Illumina hybrid, and 3,278,214 in the 454-
PBcR hybrid, an increase of 39,354 and 36,208, respectively. Additionally, 1,806 paired-ends 
were bad in the 454-only assembly, 1,688 in the 454-PBcR-Illumina hybrid, and 1,716 in the 
454-PBcR hybrid a decrease from 0.56% to 0.51% and 0.52%, respectively. 

To test the assembly correctness using an independent technology, we mapped the BGI 10 Kbp 
jumping library (not utilized during assembly) to the 454 and PBcR hybrid assemblies using 
bowtie 0.12.7 with the command bowtie –best –M 1 –p 16. We then tabulated the 
number of satisfied pairs in the assemblies. The 454-only assembly had 50.8% of the mapped 
mates satisfied while the 454-PBcR-Illumina assembly had 51.62% of the mapped mates 
satisfied (an increase of 1M over 454-only or 5.8%) and the 454-PBcR assembly had 52.47% 
satisfied (an increase of 500K over 454-only or 2.9%). Next, we calculated clone coverage for 
each base of the assembly. The clone coverage is incremented for any bases that are spanned by 
a satisfied mate, along with the bases within the mate sequences themselves. Unsatisfied (wrong 
orientation, stretched, or compressed) mates do not contribute to the clone coverage. If an 
assembly contains a chimeric join, no pairs are expected to span the join with the correct 
separation and orientation. Confirming correctness, the percentage of bases not covered by 
satisfied 10 Kbp Illumina mates was tabulated to be 0.11% in the 454-only assembly versus 
0.15% in the 454-PBcR assembly, and 0.16% in the 454-PBcR-Illumina assembly, indicating 
almost no change. To further validate PBcR joins, we identified junction regions within the 
PBcR contigs that represented gaps closed in the 454-only assembly and compared the clone 
coverage within the full PBcR hybrid assemblies to the joined regions (Figure S13). If the PBcR 
joins were introducing assembly error, their clone coverage in satisfied pairs should be lower 
than the rest of the assembly. However, both histograms have a peak at approximately 200X with 
the same percentage of bases at 0X (0.16%, and 0.15% in the 454-PBcR-Illumina and 454-PBcR, 
respectively) and no indication of a higher rate of bad paired-end sequences surrounding PBcR 



junctions. The clone coverage by satisfied pairs across PBcR junctions by an independent library 
confirms that the assembled contigs are well supported. 
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Figure S13a. 454-PBcR Joined Contigs In Melopsittacus undulatus Are Supported By Illumina Mate 
Pairs. The histograms show the per-base clone coverage by satisfied mate-pairs for the full 454-PBcR 
assembly compared to junction regions in the 454-PBcR assembly versus the 454-only assembly. The 
histograms both show a strong peak at approximately 200X clone coverage. There is a low rate of 0X 
coverage regions in both histograms (corresponding to 0.15% and 0.12% of the bases in the overall 
assembly and the joins, respectively). 
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Figure S13b. 454-PBcR-Illumina Joined Contigs In Melopsittacus undulatus Are Supported By 
Illumina Mate Pairs. The histograms show the per-base clone coverage by satisfied mate-pairs for the full 
454-PBcR-Illumina assembly compared to junction regions in the 454-PBcR-Illumina assembly versus the 
454-only assembly. The histograms both show a strong peak at approximately 200X clone coverage. There 
is a low rate of 0X coverage regions in both histograms (corresponding to 0.16% of the bases in both 
cases). The unexpected second peak at ~20X coverage could be a mapping artifact or correspond to 
regions where the Illumina jumping library exhibits lower sequencing coverage due to biases not present in 
the Illumina correction library: the two libraries were sequenced at different centers using different 
chemistries. 

	  

	  

	  



Gap closure. We mapped 454-only scaffolds to the 454-PBcR-Illumina and 454-PBcR hybrid 
assembly contigs. Whenever two adjacent contigs in a 454-only scaffold mapped to a single 
contig in the hybrid assembly (in the expected orientation), we recorded the closing sequence, 
the length of the closing sequence, and the gap size in the scaffold. Of the 33,881 scaffold gaps, 
16,251 (48%) are “closed” in the 454-PBcR assembly and 17,290 (51%) are closed in the 454-
PBcR-Illumina assembly. 11,804 gaps are closed by both assemblies. Figure S14 shows the 
difference between the expected (scaffold gap) and the observed (closed sequence length). 90% 
of the mass is between -2,000 and +2,000, demonstrating a strong agreement between 454-only 
scaffold gap estimates and the observed separation of those adjacent contigs when mapped to 
containing hybrid contigs. In addition, the distributions are identical between the 454-PBcR and 
454-PBcR-Illumina assemblies, indicating that the correction pipeline is able to generate 
accurate sequences independent of the complementary technology.  
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Figure S14. PBcR Joins Lengths are Supported by Scaffold Estimates. The histogram shows the 
difference between the expected and observed gap size: (454-only scaffold gap size) - (hybrid closing 
sequence length). Over 90.03% of the mass lies between +/- 2,000 bp, demonstrating that the vast majority 
of the closed gaps match the 454-only scaffold gap estimate. 

	  

	  



Zebra finch transcripts. The 15,275 zebra finch mRNA sequences from the Taeniopygia 
guttata, NCBI build 1, assembly version 3.2.4, genome accession ABQF00000000.1 were 
downloaded. They were mapped to all scaffolds and contigs (regardless of length) in each of the 
three assemblies using gmap (Wu et. al. 2005) with the default parameters and --cross-
species. The coverage of the resulting mappings is shown in Figure S15, as reported by the 
gmap “Coverage:” output field (it is noted that when mapping to scaffolds, gmap will count short 
stretches of N’s at the ends of exons towards the total coverage). All assemblies show good 
structural agreement, with only 81, 83, 86, and 85 chimeric mappings to the 454-PBcR, 454-
PBcR-Illumina, 454, and Illumina scaffolds. (i.e. mappings to a single scaffold with mis-ordered 
exons). Both PBcR assemblies surpass the Illumina-only and 454-only assembly in the 
percentage of CDS sequences mapped to single contigs. The 454-PBcR, 454-PBcR-Illumina and 
454 assemblies split 22%, 21% and 17% fewer transcripts across contigs than Illumina (1,369 
454-PBcR, 1,388 454-PBcR-Illumina, 1,470 454, 1,764 Illumina).  
 
The Illumina assembly benefits from the high sequencing and pair coverage and captures slightly 
more CDS in its scaffolds (23.95 Mbp 454-PBcR, 23.94 Mbp 454-PBcR-Illumina, 23.78 Mbp 
454, 24.26 Mbp Illumina). This suggests that the high-coverage Illumina assembly is able to 
accurately reconstruct and scaffold the exons, while the advantage of the long reads lies in 
resolving complex intron and non-coding sequences.  
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Figure S15. PBcR Assembly Demonstrates Better Bird Transcript Coverage. The cumulative plot 
shows the percentage of transcripts mapped at a minimum percentage to a single contig (left) and scaffold 
(right) in each parrot assembly. The Y axis is the total number of transcripts mapped at or below the 
coverage on the X axis. Perfect mapping is not possible between different species, but curves shifted 
closest to Y=100% represent assemblies with the best transcript coverage. The Illumina assembly shows 
the best transcript coverage with respect to scaffolds, with the 454-PBcR-Illumina and 454-PBcR assemblies 
having 1–2% less transcripts at a given coverage. In contrast, the PBcR hybrid assemblies have a higher 
fraction of transcripts contained within a single contig at any given coverage than either the Illumina-only or 
454-only assembly. The llumina-only assembly has the lowest percentage coverage in single contigs. This 
indicates that while the Illumina assembly effectively reconstructs a high percentage of coding sequence, the 
transcripts are split across more contigs than either the 454 or PBcR assemblies. 

	  

	  



 
 Mapped to Contigs Mapped to Scaffolds 

Min % Cov 454-PBcR-
Illumina 454-PBcR 454 Illumina 454-PBcR-

Illumina 454-PBcR 454 Illumina 

10 14366 14354 14204 14326 14423 14397 14305 14442 
20 14147 14137 13939 14058 14232 14201 14097 14284 
30 13853 13850 13511 13641 14019 13987 13857 14097 
40 13373 13357 12918 12929 13677 13642 13485 13798 
50 12628 12590 12049 11962 13163 13143 12974 13343 
60 11536 11465 10830 10575 12356 12320 12169 12574 
70 10327 10231 9605 9225 11395 11352 11246 11656 
80 8876 8774 8156 7719 10070 10054 9992 10401 
90 7056 6909 6333 5927 8243 8185 8152 8586 

100 2181 2086 1867 1821 2688 2620 2648 2840 
Supplementary Table S6 – CDS Coverage Values. The table shows the data plotted in Figure S15 above. The Min % 
Coverage corresponds to the number of transcripts with at least this coverage in a mapping to a single contig or scaffold. 

	  
Gap contents. Of the 16,251 and 17,290 closed scaffold gaps, 12,081 and 12,843 (74.34% and 
74.28%) are intergenic in the 454-PBcR and 454-PBcR-Illumina assemblies, respectively (Table 
S7). The remaining gaps are genic, of which the vast majority are intronic. The few exonic gaps 
contain a total of 3,117 and 3,220 new exons in the 454-PBcR and 454-PBcR-Illumina 
assemblies (some gaps contain multiple exons). The new exons have an average identity to the 
zebra finch transcripts of 87.53% and 88.24% versus 89.17% and 89.19% overall exon identity. 
The slightly lower identity may be due to lower coverage in these difficult to sequence regions: 
the average coverage in closed gaps being 13.9X and 12.69X. In contrast, the average coverage 
is 17.48X and 16.94X in the 454-PBcR and 454-PBcR-Illumina assemblies, respectively. This 
corresponds to a 20–25% lower average coverage in closed scaffold gaps. The lower coverage 
could be explained by GC bias in second-generation sequencing. We measured GC% content in 
100 bp windows in the closed gap regions (versus the entire assembly) and tabulated the 
percentage of windows with an extreme GC% (GC <20% or >80%). The 454-PBcR assembly 
has 0.34% extreme-GC windows and the 454-PBcR-Illumina assembly has 0.38% extreme-GC 
windows. By contrast, the 454-PBcR gaps have 3.38% extreme-GC windows while the 454-
PBcR-Illumina gaps have 6.42% extreme-GC windows. This would suggest that the Illumina 
TruSeq3 chemistry outperforms the 454 reads in areas of extreme GC composition. 
 

 



 

Total scaffold gaps 33,881 33,881 

   Assembly 454-PBcR 454-PBcR-Illumina 
Coverage 17.48 16.94 

GC extreme (100bp windows < 20 %GC > 80 %GC) 39,376 (0.34%) 45,459 (0.38%) 

   

Closed scaffold gaps 16,251 17,290 

Total closed scaffold gap length 10.6 Mbp 9.5 Mbp 
Average closed scaffold gap length 652.5 bp 548.3 bp 

Coverage of closed scaffold gaps 13.9 12.69 

GC extreme (100bp windows < 20 %GC > 80 %GC) 6,699 (2.85%) 4,130 (1.94%) 

GC extreme (only positive gaps) 4,121 (6.42%) 1,585 (3.38%) 

   

Gaps between genes 12,081 12,843 

Gap overlaps gene model 4,170 4,447 

Gap at least part intron 4,098 4,339 

Gap within intron 2,875 2,879 

Gap within exon 72 108 

Gap contains exon 950 1,097 

Gap within 5Kbp of upstream 1,560 2,131 

   Avg exon idy 89.17 89.19 

Avg gap exon idy 87.53 88.24 

Number of gap exons 3,117 3,220 

   Assemblathon read mapping 
  Corrected PBcR reads 3,70,129 3,771,721 

Maps % 99.94 99.61 

Maps end-to-end % 96.95 93.71 

End-to-end %idy 99.61 99.52 

Fragmented mappings % 3.05 6.29 

Chimeric mapping % 1.42 4.18 

Maps to contig boundary % 1.63 2.11 

Supplementary Table S7. Number and location of the PBcR Closed Gaps. The table shows the scaffold 
gaps closed by PBcR sequences both in the 454-PBcR and 454-PBcR-Illumina assemblies relative to the 
mapped mRNA zebra finch transcripts. These numbers are out of 33,881 total scaffold gaps present in the 
454-only assembly. The assemblies close 48% and 51% of these gaps respectively. 11,804 gaps are closed 
by both the 454-PBcR and 454-PBcR-Illumina assemblies. 

	  



Biologically relevant sequences. The PBcR assemblies (454-PBcR and 454-PBcR-Illumina) 
close a number of biologically relevant gaps present in the 454-only assembly of the 
Melopsittacus undulatus genome. In all instances, the closed gaps were annotated by aligning 
them to the published zebra finch genome and a previously assembled and annotated version of 
the parrot genome. Of the genes listed below, NAV3 and GRIK3 contain gaps that are closed by 
the Illumina and both PBcR hybrid assemblies. The full EGR1 promoter region is only found in 
the 454-PBcR-Illumina assembly and contains a gap in all others. FOXP2, PLEXIN A4, 
GRIK2A, and GRIN2B contain gaps in both the 454 and Illumina assemblies that are closed by 
both PBcR assemblies. Figure S16 illustrates for FOXP2 the improved continuity of the PBcR 
assemblies relative to all others. Details for each of the closed gaps are given here: 
 

• NAV3 downstream gap: NAV3 belongs to the Neuron Navigator family of genes 
thought to be involved in axon guidance (Maes et. al. 2002), and shows correlated down-
regulation in the vocal-learning associated regions in human, zebra finch and budgerigar 
brains. A gap downstream (possibly in the as yet un-annotated 3’ UTR) of this gene is 
closed by both PBcR assemblies and the Illumina assembly. 

• PLEXIN A4 exons: Plexin A4 is another axon guidance gene that has been shown to be 
differentially expressed in vocal-learning associated brain regions in songbirds 
(Matsunaga et. al. 2009). Both PBcR assemblies reconstruct 100% of the transcript’s 
exons, while the 454 and Illumina assemblies recover only 20.8% and 47.5% of this 
transcript in their scaffolds, respectively. 

• GRIK3 intron: Glutamate receptors are important neurotransmitters of the vertebrate 
central nervous systems and their expression patterns have been extensively studied in the 
brains of vocal learning birds (Brose et. al. 1999). The GRIK3  (glutamate receptor, 
ionotropic, kainate 3) gene in particular shows possibly elevated expression in the brain 
nuclei controlling song production in zebra finches based on (Brose et. al. 1999) and 
unpublished microarray data (Jarvis, personal communications). The 454 assembly 
contains a 453-base pair long negative gap in a GRIK 3 intron, meaning the sequence is 
present but was split across overlapping contigs. This region is correctly assembled by 
both PBcR assemblies and the Illumina assembly. 

• GRIN 2A, GRIN 2B introns: These genes also encode important glutamate receptors. In 
particular, these genes show robust differential expression in vocal learning associated 
brain regions in the zebra finch brain (Wada et. al. 2004). Gaps are found in the introns of 
these genes in both the 454 and Illumina assemblies, and are closed by both PBcR 
assemblies. 

• EGR1 upstream promoter: EGR1 is a major immediate early gene that connects 
external stimuli to transcription in neurons (Morgan et. al. 1989). It has been used 
extensively in vocal-learning birds such as songbirds to map gene expression induced by 
motor activity (Jarvis et. al. 1997). The published zebra finch and chicken assemblies 
both contain gaps ~700 bp upstream of the EGR1 gene in a GC-rich area (above or near 
70% GC). The 454, Illumina, and 454-PBcR assemblies all fail to completely assemble 
across this region: only the 454-PBcR-Illumina assembly reconstructs this region with no 
gaps. This suggests that both high-coverage (Illumina) and long reads (PBcR) are 
required for the proper assembly of this difficult, GC-rich sequence. 

• FOXP2 introns: FOXP2 has been implicated in severe speech disorders in humans (Lai 
et. al. 2001) and is widely studied as a possible target of selection in the evolution of 



speech and language in humans (Enard et. al. 2002; Enard et. al. 2011). Similarly, 
knockdown of this gene’s expression level in songbirds leads to incomplete and 
inaccurate song imitation (Haesler et. al. 2007) and expression level is differentiated 
between vocalization-associated brain nuclei and the surrounding tissue in the brains of 
vocal learning birds (Haesler et. al. 2004). Despite this, differences in coding sequence 
do not appear to be associated with song learning, highlighting the importance of 
understanding the mechanisms of its regulation (Carroll 2005). FOXP2 is an extremely 
long gene, spanning 400 Kbp of the genome with very large introns, making it difficult to 
accurately assemble its non-coding sequence. Figure S16 displays the FOXP2 locus 
relative to the zebra finch annotation, highlighting the increased continuity of the PBcR 
assemblies relative to the 454 and Illumina parrot assemblies and the zebra finch Sanger 
assembly. We found that 94.1% of the FOXP2 transcript maps to a single 504,945 bp 
contig in the 454-PBcR-Illumina assembly, (90.8% in the 454-PBcR) while only 80.5% 
is contained in smaller 163,917 bp and 119,070 bp contigs in the 454 and Illumina 
assemblies, respectively. Clearly the PBcR assemblies provide the most complete 
representation of the important structure of this gene. 
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Figure S16. PBcR Assemblies Better Reconstruct the FOXP2 gene. The figure shows a view from the 
UCSC Genome Browser Zebra finch genome (http://	  http://genome.ucsc.edu/). The selected region 
corresponds to the FOXP2 gene, falling on chromosome 1A. The orange lines (Assembly from Fragments) 
correspond to the zebra finch Sanger assembly. All assemblies without PBcR sequences are highly 
fragmented. In contrast, the 454-PBcR assembly has only three contigs while the 454-PBcR-Illumina 
assembly accurately reconstructs almost the entire gene in a single contig. The PBcR assemblies are able 
to better represent this important gene, improving even on Sanger assemblies.  
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